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order to gather statistics that are in any way mean- 
ingful, we have largely, but not exclusively, restricted 
our attention to known, albeit real, crystal struc- 
tures. [See the accompanying paper by Weeks et al. 
(1994).] A few concluding remarks are in order. 

The implementations have been of the multiso- 
lution variety, each starting point being defined by a 
new random structure. Currently, we are searching 
over hundreds or thousands of starting points and 
each starting point has been subjected to tens or 
hundreds of cycles: {structure factor, R minimi- 
zation, Fourier transformation, map interpretation, 
...}. Clearly, to make the process more computatio- 
nally bearable, we need to focus our attention on 
three areas. Can we identify promising starting struc- 
tures prior to entering the process? Can we speed up 
the process itself by employing different minimizing 
procedures? Can we develop similar but more robust 
functions of the phases that widen the already very 
wide radius of convergence of the procedures? 

We thank Dr Robert Jones of the Thinking 
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electronic conversations and Mr C. S. Chang of the 
Department of Computer Science for implementing 
these procedures on a variety of parallel-architecture 
platforms. Generous grants of computer time from 
the Thinking Machines Corporation, Intel and Dr 
Robert Martino of the National Institutes of Health, 
made many of these advances testable. This work 
was supported by NSF grants nos. CHE-8822296 
and IRI-9108288, NIH grants nos. GM46733 and 
DK19856 and the Harker Grant from the Medical 
Foundation of Buffalo. 
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direct-methods procedure that shows potential for 
providing fully automatic routine solutions for struc- 
tures in the 200--400 atom range. This procedure, 
which has been called shake-and-bake, is an iterative 
process in which real-space filtering is alternated with 
phase refinement using a technique that reduces the 
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value of R(~o). It has been successfully tested using 
experimental data for a dozen known structures 
ranging in size from 25 to 317 atoms and crystalliz- 
ing in a variety of space groups. The details of this 
procedure, the parameters used and the results of 
these applications are described. 

Introduction 

Existing crystallographic methods permit the routine 
solution of most structures containing fewer than 
100 independent non-H atoms, but successful 
applications to significantly larger molecules are 
difficult and usually require considerable expertise 
and painstaking effort. The continual development 
of ever more powerful computers has motivated the 
search for a direct-phasing method that is auto- 
matically and routinely applicable even to structures 
containing a few hundred atoms. This search has 
caused the following question to be asked: with a set 
of randomly positioned atoms, is it possible to devise 
a refinement strategy that will produce a correct 
structure? The strategy proposed here, termed shake- 
and-bake, is an iterative procedure that alternates 
phase refinement with real-space filtering techniques. 
The basis for phase refinement is provided by the 
minimal principle (Hauptman, 1988, 1991; DeTitta, 
Weeks, Thuman, Miller & Hauptman, 1994). 

The minimal principle effectively exploits the 
information inherent in the conditional probability 
distributions of the triplet and negative-quartet 
structure invariants. The triplet, or three-phase, 
invariants 

THK = (PH + ~0K "~" (P-H-K ( l )  

and the quartet, or four-phase, invariants 

QLMN = ~0L + ~0M + ~0N + q~-L-M-N (2) 

are generated from a specified basis set of phases {q~} 
having the largest corresponding normalized 
structure-factor magnitudes ([EHI etc.). The param- 
eters AHK associated with the triplets THK and the 
parameters BLMN associated with the quartets QLMN 
are defined by 

AHK = 2N-I/2]EHEKEH+K [ (3) 

and 

BLM N = 2N-'IELEMENEL + M + NI[(I EL + M] 2 

+ IEM+NI 2 + ]EN+d 2) -- 21, (4) 

where N is the number of atoms, assumed here to be 
identical, in the unit cell. It should be noted that 
BLMN takes on negative values when the cross-term 
normalized structure-factor magnitudes ([EL+M[, 
]EM+N], ]EN+ L[) are all relatively small, and that the 
cross-term phases need not be in the set {~o}. It is 

also convenient to define 

tHK = I,(AHK)/Io(AHK), 

and 

t'uK = I 2 ( A H g ) / I o ( A H g ) ,  

ILMN = I¿( BLMN)/ Io( BLMN) 
(5) 

/LMN = I 2 ( B , . M N ) / I o ( B L M N ) ,  

(6) 

where Io, II and 12 are the modified Bessel functions. 
The minimal function can then be expressed as 

R(q~) = [ ~ AHK(COS 7"!t K - -  / H K )  2 

I 

k H.K 

+ Y~ IBLM~I(cos QLM,, -- tL,,,N) 2] 
L,M,N 3 

( / '  × 2 A,K + 2 [BLMNI , (7) 
H,K L.M.N 

where the conditional expected value of Cos(THK) 
given AHK is the Bessel-function ratio denoted by tnK 
and tLMN is the expected value of CoS(QLMN) given 
BLMN. Then, with a sufficiently large number of 
phases constrained to values consistent with an 
atomic structure, R(q~) has a global minimum at the 
point where all phases are equal to their true values 
for some choice of origin and enantiomorph. Phase 
refinement can be achieved by altering the values of 
the phases in such a way that the value of R(~,) is 
reduced. 

When the phases are equal to their true values, the 
value of R(q~) is given by 

Rr  = ~ +  AuK+ Z ]BLMN[ 
! L,M,N 

[ 2 A.K(~t'HK- t~,K) × 
L H,K 

+ 2 IB'MNI(~t~MN-- t~MS)] < ~, (8) 
L,M.N J 

independent of the choice of origin and enantio- 
morph. In contrast, the value of the minimal func- 
tion when the values of the phases are chosen at 
random is 

( )' RR=~+ 2AH~+ ~ IBLMNI 
\ H.K L,M,N 

)< { ~-~ AHKt2K ~- Z H , K  L,M,NIBLMN'/2MN} >~" (9) 

With (8) and (9), Rr and RR can both be calculated 
ab initio without prior knowledge of the phases and 
Rr  can provide an indication of the expected R(~o) 
values for a solution. 
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Equations (7)-(9) are strictly correct only for PI 
and the few other space groups having no centro- 
symmetric phases. In P1 and other centrosymmetric 
space groups, the conditional expected values of 
cos(TnK) and C o S ( Q L M N )  a r e  given by tanh(AuK/2) 
and tanh (BLMN/2). The centrosymmetric equivalents 
of (7)-(9) are 

R T  = 1 - -  

and 

R(~) = { AuK[cos TnK - tanh (AUK/2)] 2 
H,K 

IBLMNI[COS QLMN --  tanh (BI.MN/2)] 2} 
I.M,N 

[ ]-' A.K+ E la~MNI , (10) 
H,K L,M,N 

( / E A.K + E 18,.M~I 
H,K L.M.N 

× [ ..KX AnKtanh 2 (A.K/2) 

+ c,M.NE IBcMNltanh z (BLMN/2) ] < 1 (11) 

( )-' n R = l +  EA.K+ E laLMNI 
H,K L.M.N 

× [ ~ AHK tanh2 (Amd2) 
L H,K 

+ Z IBLM~ltanh2(B,.MN/2)] > 1. (12) 
L.M.N 3 

In non-centrosymmetric space groups, invariants 
having restricted values should be treated as in the 
centrosymmetric case. 

Phase-determination procedure 
The six-part shake-and-bake structure-determination 
procedure, shown by a flow diagram in Fig. 1, 
combines minimal-function phase refinement and 
real-space filtering. It is an iterative process that is 
repeated until a solution is achieved or a designated 
number of cycles have been performed (DeTitta, 
Hauptman, Miller, Pagels, Sabin, Thuman & Weeks, 
1991; Weeks, De Titta, Miller & Hauptman, 1993). 
For the present purposes, 'solution' does not neces- 
sarily imply a complete structure but rather a set of 
atomic positions that can be readily refined and 
extended by standard least-squares and Fourier tech- 
niques. With reference to Fig. 1, the major steps of 
the algorithm are described next and typical values 
of the various parameters used in this procedure are 
given and summarized in Table 1. 

Table 1. Shake-and-bake variables with typical values 

Independent non-H atoms N' 
Invariant generation: 

Phases per atom 10 10 10 
Triplets per atom 100 or 20 or 100 
Negative quartets per atom 0 100 500 

Initial phasing model I, 2 or 4 atoms 
Parameter shift 

Step size 16 
Number of steps + 5 

Real space: 
Grid size 0.33 A 
Peaks selected - N" 

Number of cycles N '  1.5N' 

A. Generate invariants 

Normalized structure-factor magnitudes (=El's) 
are generated by standard scaling methods such as a 
Wilson plot, and the triplet and negative-quartet 
(those with BLMN < 0) invariants that involve the 
largest corresponding I El's are generated. Parameter 
choices that must be made at this stage include the 
numbers of phases, triplets and negative quartets to 
be used. Successful applications have been made 
using triplets alone as well as combinations of triplet 

Start ) 

A* 
Generate invariants ] 

Phase refinement 
[R(~0) reduced] 

Fourier 
summation 

Generate trial [.~ Yes ~ No ~._f ) 
structure '~ vk ,  ~ Stop 

C l IN° 
calculation or Yes 

inverse Fourier 
summation 1 

No 

Real-space ~ Yes 
filtering ~ ~ / , /  

Fig. I. Flowchart for shake-and-bake, the minimal-function phase 
refinement and real-space filtering procedure. 
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and quartet invariants. The total number of 
invariants is chosen to be at least 100 times the 
number of atoms. Further, when both triplets and 
quartets are used, the numbers of the two types of 
invariants are normally chosen so that YA = ~lBI. 
The ratios of the numbers of phases, triplets and 
negative quartets to the number of non-H atoms in 
the asymmetric unit give what is called the 'phase- 
invariant ratio'. For example, if the phase determina- 
tion for a structure with 50 independent atoms 
involved 500 phases, 5000 triplets, and 25000 
negative quartets, this ratio would be 10:100:500. 

B. Generate trial structure 

A trial structure or model is generated that is 
comprised of a number of randomly positioned 
atoms and their symmetry-related mates sufficient to 
specify the origin and enantiomorph for the space 
group in question. The starting coordinate sets are 
subject to the restrictions that no two atoms are 
closer than a specified distance (normally 1.2 A) and 
that no atom is within bonding distance of more 
than four other atoms. 

values are varied in sequence as just described. Note 
that, when the ith phase value is varied, the new 
values determined for the previous i -  i phases are 
used immediately in the calculation of R(¢,). 
Although this process, when convergent, yields the 
constrained global minimum of R(~o), the procedure 
described retains a measure of sequential character. 
The step size and number of steps are variables 
whose values must be chosen. In some shake-and- 
bake applications, an alternative method has been 
used to vary the phase values (Miller, DeTitta, Jones, 
Langs, Weeks & Hauptman, 1993). In centrosymme- 
tric space groups, each phase takes on the values 0 
and 180 °, and the value yielding the smaller R(~0) is 
chosen. 

E. Fourier summation 

Fourier summation is used to transform phase 
information into an electron-density map. 
Normalized structure-factor amplitudes, IEi's, have 
been used at this stage (rather than F's) because 
phases are available for the largest E's but not for all 
the largest F's. The grid size must be specified. 

C. Structure-factor calculation 

A normalized structure-factor calculation based on 
the trial coordinates is used to compute initial values 
for all the desired phases simultaneously. In subse- 
quent cycles, peaks selected from the most recent 
Fourier series are used as atoms to generate new 
phase values. In the applications reported here, all 
non-H atoms were considered to be equal unless 
stated otherwise. 

D. Phase refinement 

The values of the phases are perturbed by a 
parameter-shift method in which R(~o), which 
measures the mean-square difference between 
estimated and calculated structure invariants, is 
reduced in value. R(~o) is initially computed on the 
basis of the set of phase values obtained from the 
structure-factor calculation in step C. The phase set 
is ordered in decreasing magnitude of the associated 
I Ei's. The value of the first phase is incremented by 
a preset amount and R(q~) is recalculated. If the new 
calculated value of R(q~) is lower than the previous 
one, the value of the first phase is incremented again 
by the preset amount. This is continued until R(q~) 
no longer decreases or until a predetermined number 
of increments has been applied to the first phase. A 
completely analogous course is taken if, on the intial 
incrementation, R(q~) increases, except that the value 
of the first phase is decremented until R(r¢) no longer 
decreases or until the predetermined number of 
decrements has been applied. The remaining phase 

F. Real-space filtering 

Image enhancement has been accomplished by a 
discrete electron-density modification consisting of 
the selection of a specified number of the largest 
peaks on the Fourier map for use in the next 
structure-factor calculation. The simple choice, in 
each cycle, of a number of the largest peaks corre- 
sponding to the number of expected atoms has given 
satisfactory results. No minimum-interpeak-distance 
criterion was applied at this stage. 

Results and discussion 

The shake-and-bake procedure has been tested 
succesfully using the experimentally measured 
atomic-resolution intensities for the known stuctures 
listed in Table 2. These structures range in size from 
25 to 317 independent non-H atoms in the asym- 
metric unit and crystallize in seven different space 
groups. Two structures contain moderately heavy P 
or Cl atoms. Some of these structures (e.g. 
9a-methoxycortisol) were easily solved by conven- 
tional direct methods, while at least one of them 
(gramicidin A) required years of painstaking non- 
routine effort. Several presented some challenge and 
three (prostaglandin E2, AZET and APAPA) were 
included in a suite of difficult structures supplied by 
the crystallographic group at the University of York, 
England. 

Solutions are trial structures having a close match 
between peak positions and the known true atomic 
positions for some choice of origin and enantio- 
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Table 2. Test data sets re-solved using the minimal 
function 

Space 
Structure Atoms Formula  group 

Prostaglandin E2 25 C2oH3205 PI 

Prostaglandin F~fl 25 C2oHx~Os C2 

Alsosterone 27 C2tHzaOs.H20 P2t 

9a-Methoxycortisol 28 C 2 2 H 3 2 0 6  P2,2,2~ 

AZET 48 (C2~H~6CINO)~ Pca2, 

Tetrahymanol 63 (C~oH~20)~.H~O P2, 

APAPA 

Antibiotic A204A 

lsoleucinomycin 

69 C3oH37NtsO,6P2.- P4~2,2 
6H20 

71 C40Hs,O,7.H20.- C2 
C3H60 

84 C~H,o2N60~s P2~2~2, 

meso-Va l inomyc in  84 C6oH,osN6Ot8 PI 

Non-peptidic 96 (C~4H~N20~)~ PI 
enkephalin analog 

Hexaisoleucinomycin 127 C,~Hj,oN~O~4.- P2~2,2, 
14H20 

Gramicidin A 317 (C~H,4oN2oO,7)...- P2,2,2~ 
15C.H ~OH 

Reference 

Edmonds & Duax 
(1974) 
G. T. DeTitta 
(unpublished) 
Duax & 
Hauptman (1972) 
Weeks, Duax & 
Wolff (1976) 
Colens, Declercq, 
Germain, Putzeys 
& Van Meerssche 
(1974) 
Langs, Duax, 
Carrell, Berman 
& Caspi (1977) 
Suck, Manor & 
Saenger (I 976) 
Smith, Strong & 
Duax (1978) 
Pletnev, Galitskii, 
Smith, Weeks & 
Duax (1980) 
D. A. Langs 
(unpublished) 
D. A. Langs 
(unpublished) 
Pletnov, lvanov, 
Langs, Strong & 
Duax (1992) 
Langs (1988) 

morph; non-solutions do not have a significant cor- 
relation between peaks and atomic positions. In 
order to evaluate the success or failure of a particular 
trial during initial experimentation, it was often 
useful to consider the mean phase error or average 
absolute value of the deviations of the phases from 
their values calculated using the final refined coordi- 
nates and thermal parameters. Solutions typically 
have mean phase errors of 30 ° or less. In space 
groups P2~2121, the mean phase error reported is 
actually the minimum such error for the 16 possible 
positions of the structure corresponding to the eight 
choices of origin and two choices of enantiomorph. 
In all space groups, including those that have an 
infinite number of origin positions, solution can be 
conveniently identified by comparison of the calcu- 
lated structure invariants for a trial structure to the 
actual values for the refined structure. 

Unless clearly stated otherwise, the results 
reported here are for the 28-atom P2~2121 test struc- 
ture 9a-methoxycortisol. These results are for 30 
shake-and-bake cycles using the phases for the 280 
reflections having the largest I EI, single randomly 
positioned atoms to give initial phases, a maximum 
of five positive or five negative parameter-shift steps 
of 16 ° each, and Fourier summations of 0.33 A 
resolution from which the largest 28 peaks were 
selected and used as trial structures in the structure- 
factor calculations for the subsequent cycle (see Fig. 

1 and Table 1). The behavior of the 9a-methoxy- 
cortisol data appears to be typical. Test calculations 
based on other data sets have, so far, confirmed the 
conclusions and choices of parameter values 
obtained from the analysis of this small steroidal 
data set. 

Fig. 2 contrasts the behaviors of the minimal 
function for trial structures that become solutions 
and for those that do not. Curve III corresponds to a 
non-solution that consistently has one of the lowest 
values of R(~o) and curve IV is typical of a non- 
solution with one of the highest R(q0 values. In this 
example, the 280 reflections having the largest I EI 
values for 9a-methoxycortisol were used to generate 
the 560 triplets and 2800 negative quartets with the 
largest A and [BI values, respectively (i.e. phase- 
invariant ratio 10:20:100). Under these conditions, a 
'solution' corresponds to a mean phase error of 
approximately 10 °. Initial R(~o) values were in the 
range 0.6-0.7 and the values for trials not corre- 
sponding to solutions tended to decrease slowly over 
the first 15 cycles until they were in the range 
0.42-0.6. Final R(~0) values for solutions were in the 
range 0.32-0.34 and clearly distinguishable from the 
values for non-solutions. As shown by the R(q0 and 
mean-phase-error curves for a typical solution, both 
R(~0) and phase-error values fall quickly just before a 
solution is achieved. Successful trials cannot be 
distinguished from the unsuccessful on the basis of 
R(~,) until the mean phase is in the range 30-40 °, just 
a few cycles before a successful conclusion. Even 
partial solutions, with approximately half the atoms 
in the correct positions, that eventually converge to 
solutions have R(~o) values in the same range as 
those for non-solutions. However, final R(~o) values 
clearly identify solutions. 

The probability of success depends strongly on the 
initial phase error, as illustrated in Fig. 3. The initial 
mean phase errors for 10000 randomly positioned 

0.8 90 
. . . .  - ,  , - ,  , ,  . . . . . . . . . .  , . . . . . .  o ' ,  . .% . ° . ,  V I . , .  o 

. . w . . : . . ~ . , .  . . . . . . . .  , . .  . . . . .  , . . . .  

~\ . , . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . .  v . . . , , ,  _ 80 

0.7- '-'~ -" -70 

0.6 • ~.,  ~ x. . , , -  -% o 
, ._., ~ ,  I , .  • • I V  , - \  X ~  .. . - . . . - 5 0  

-4o "~ 
0.5 

" , . . - : , , , . ~  ,m -30 

0.4 \. II - 20 
~'.  ° s "  

0.3 0 1 1 I 

0 5 10 lW5 20 25 310 

Cycle 

Fig. 2. Comparison of  R(q0 (I) and mean phase error (II) for a 
solution trial with R(q0 (III, IV) and mean phase error (V, VI) 
for two non-solution trials. 
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one-atom 9a-methoxycortisol trial structures were 
computed, and the number of successful trials in 15 
groups of 100 trials having approximately equal 
initial mean errors was determined after 30 cycles. 
The success rate is over 80% when the starting error 
is 65 ° or less and drops to an approximately constant 
level of 5% when the error increases to 80 ° or more. 
In addition, it has been observed for this structure 
that, when the mean phase error is reduced to 55 ° or 
less during refinement, convergence to a solution is 
guaranteed. 

After 30 shake-and-bake cycles, an overall success 
rate of about 13% was observed for 500 9a-  
methoxycortisol trials that were randomly generated. 
The data presented in Table 3 show that, as the 
number of atoms included in the initial model is 
reduced, so is the minimum value of the initial mean 
phase error that can be obtained for any trial. In 
contrast, the average initial mean phase error for 
I0000 trials does not vary much regardless of 
whether 1, 2 or 28 atoms are included in the initial 
model. Thus, the success rate does not change sig- 
nificantly regardless of the initial model size even 
though the few one-atom trials with lowest initial 
error are virtually certain to succeed. These few best 
trials may, however, be of critical importance in the 
case of larger structures that have very few successful 
trials. Both the minimum and average initial mean 
phase errors are larger for random phase trials than 
for any of the atomic models, and this is reflected in 
the slightly reduced overall success rate of 10%. 
These observations indicate that suitable random 
starting phases may be those obtained from a model 
with the minimum number of atoms required to 
specify the origin and enantiomorph for the relevant 
space group. 

The relationship between success rate, a single- 
atom starting point, initial phase error and initial 

100 

90- 

80- 0 0 
70- 

;~ 6o- 

~ . ~ °  
e-, 

m 30- 
3 

20- 
o 

10- 

O O O 
0 

6o 6'5 7; 7; 8'0 8; 90 
Initial mean  phase er ror  ( ) 

Fig. 3. The  co r re l a t ion  o f  successful so lu t ions  with lower  initial 
phase  e r ro r  fo r  9 a - m e t h o x y c o r t i s o l .  

Table 3. Initial atomic model and success rate .['or 
9o~-methoxycortisol 

Initial m e a n  phase  e r ro r  ( ' )  So lu t ions  (%)  
Initial model :  (10000 trials) (500 trials, 

n u m b e r  o f  a t o m s  M i n i m u m  Ave rage  30 cycles) 
1 54.9 82.6 13.2 
2 62.0 82.7 12.6 

28 70.0 83.1 13.0 
0 (random phases) 75.6 87.1 10.2 

Table 4. Correlation o f  success rate after 30 cycles 
with initial parameters ./'or 9o~-methoxycortisol one- 

atom starting points 0.25 A apart 

N u m b e r  o f  
N u m b e r  o f  trials so lu t ions  So lu t ions  (%)  

2880 233 8. I 

(a) R a n g e  o f  d is tances  o f  initial a t o m  f r o m  neares t  a t o m i c  center  
(A) 
0.00-0.25 139 63 45.3 
0.25.0.50 766 108 14. I 
0.50-0.75 1010 45 4.5 
0.75 1.00 624 13 2.1 
> l.O0 341 4 1.2 

(b) Range of initial mean phase error C) 

54.0 80.5 576 149 25.9 
80.5 83.1 576 23 4.0 
83.1---84.5 576 27 4.7 
84.5 85.8 576 21 3.7 
85.8 90.3 576 13 2.3 

(c) R a n g e  o f  initial R(~,) 

0.37-0.51 576 55 9.6 
0.51 4).54 576 49 8.5 
0.54-0.58 576 49 8.5 
0.58-0.77 576 44 7.6 
0.77 0.96 576 36 6.3 

R(q~) is further clarified by the data presented in 
Table 4. Starting atoms were generated by placing a 
0.25/k grid in the asymmetric part of the 9a- 
methoxycortisol cell (i.e. 0 <_ x <_ 0.25, 0 _< y _< 0.25, 
0 _  z_< 0.25 after consideration of all origin and 
enantiomorph positions). The coordinates of the 
points so generated were used as starting atoms in 
2880 trials, and the phases so obtained were refined 
for 30 cycles using triplets alone (phase-invariant 
ratio 10:100:0). The success rate was found to be 
highly correlated not only with the initial mean 
phase error but also with the distance of a grid point 
to the closest atomic position for any choice of origin 
and enantiomorph. In contrast, the correlation of 
successful solutions with initial R(~0) was relatively 
weak, in agreement with the results presented in Fig. 
2. As would be expected, there is also a correlation 
between distance from the closest atomic position 
and initial mean phase error, which is 72 ° for the 139 
points closer than 0.25 A and greater than 84 ° for 
points further than 0.5 A. The average initial R(q~) 
value is 0.54 for the 139 closest points, and this 
quantity increases steadily and is 0.69 for the 341 
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points further than 1.0 ~ from the closest atomic 
position. 

The data presented in Tables 5-7 illustrate how 
variation in a number of parameters affects the 
success rate for 9a-methoxycortisol. Table 5 shows 
the results of changing the phase/atom ratio. In this 
experiment, all possible triplets that could be gener- 
ated for each set of phases were used, but no 
negative quartets were included. The success rate 
appears to reach a maximum at a phase/atom ratio 
of 9-10 and a ratio in this range appears to be 
optimum; however, solutions are stable and can be 
easily distinguished on the basis of R(~,) even when 
this ratio is as low as 3.6. Perhaps the main limiting 
factor as the number of phases decreases is series 
termination in the Fourier. This is indicated by the 
decreasing number of correct atomic positions on 
solution maps as the number of phases decreases. 

Table 6 shows the effects of changing the 
parameter-shift step size and number of steps. The 
phase-invariant ratio used for these tests was 
10:20:100. These data indicate that it is best to 
permit a maximum shift of 180 ° per phase per cycle. 
Use of smaller step sizes and performance of more 
evaluations of R(~o) actually decreases the success 
rate while increasing the required computer time. In 
fact, of the conditions tested, the combination of two 
90 ° steps gives the best results. 

Table 7 examines changes in the invariant set used 
for phase refinement, a decrease in Fourier resolu- 
tion, and the number of peaks selected as atoms. It 
also addresses the question of how many cycles 
should be performed. Reduction of the resolution of 
the E maps from 0.33 to 0.66/~ significantly reduces 
the success rate, but use of fewer of the largest peaks 
as atoms in the structure-factor calculations for the 
first few cycles does not make a significant difference. 
It is not cost effective to do more than 30 cycles 
because the number of additional solutions is less 
than the number that would be obtained by starting 
with a comparable set of fresh trials. Tests using 
other data sets have shown that, if the number of 
atoms to be found is less than 100, it is appropriate 
to do about as many cycles as there are atoms. 
However, until there is more experience with this 
method, it might be prudent to increase the number 
of cycles somewhat for larger structures. 

Success rates as measured by the number and 
percentage of random trial structures that converge 
to solution are presented in Table 8 for a number of 
the test structures. The corresponding Rr, RR and 
R(~o) values are given in Table 9. The number of 
randomly positioned atoms used to compute initial 
phases was one for the P212~2~, Pca2~, P412~2 and 
P i  structures, two for the monoclinic (C2 and P21) 
structures, and four for the P1 structures. In all 
cases, a maximum of five parameter-shift steps of 16 ° 

Table 5. Effects of  different numbers of phases on 
success rate after 30 cycles for 500 9a-methoxy- 
cortisol trials with single randomly positioned starting 

atoms 

Phases, Triplets Number Minimum Maximum Minimum 
phases per of Solutions atoms per R(~o) R(~o) non- 

per atom atom solutions (%) solution solution solution 
100, 3.6 9 16 3.2 17 0.17 0.20 
150, 5.4 28 27 5.4 19 0.24 0.29 
200, 7.1 65 35 7.0 22 0.29 0.35 
250, 8.9 124 39 7.8 24 0.31 0.40 
300, 10.7 211 38 7.6 26 0.33 0.44 

Table 6. Effects of  different parameter-shift variables 
on success rate after 30 cycles for 500 9a- 
methoxycortisol trials with single randomly positioned 

starting atoms 

N u m b e r  M a x i m u m  shift 
Step size (°) o f  steps per  cycle C) So lu t ions  (%)  

___4 5 ___20 5 
_+4 10 _+40 8 
_+4 20 _+80 11 
___4 40 _ 160 13 

_ 8 5 -+40 8 
_+8 10 _+80 11 
_+8 20 _+ 160 12 

_+ 16 3 ___48 9 
_+ 16 5 _+80 13 
_+ 16 10 _ 160 15 

_+32 3 __+96 15 
___32 5 _ 160 18 

_+45 4 -+ 180 17 
-+60 3 __+ 180 21 
-_+ 90 2 -+ 180 26 

-+ 180 1 -+ 180 13 

Table 7. Effects of  various parameters on success rate 
for 500 9a-methoxycortisol trials with single randomly 

positioned starting atoms 

Triplets per atom 20 50 100 100 20 20 
Quartets per atom 100 250 500 0 100 100 
Fourier resolution (A) 0.33 0.33 0.33 0.33 0.66 0.33 
Number of peaks selected 28 28 28 28 28 Variable* 
Number of  solutions: 

Cycles 1- I 0 21 22 21 11 I I 24 
Cycles ! 1-20 25 19 21 15 13 26 
Cycles 21 - 30 20 12 I 1 13 8 17 
Cycles 31--40 13 18 11 10 5 12 
Cycles 41 50 12 12 3 6 3 6 
Cycles 51 60 5 7 4 5 2 6 
Cycles 61-70 2 3 5 6 0 3 
Cycles 71 - 80 10 4 6 6 0 3 
Cycles 81-90 3 4 1 1 0 3 
Cycles 91 - 100 2 2 2 1 0 3 

Success rate 23 21 17 15 8 21 
(cycles 1 !00) (%) 

* The  n u m b e r s  o f  peaks  selected in successive cycles beg inn ing  
with cycle 1 were 1, 2, 3, 5, 8, 13, 21, 28, 28 . . . . .  

were performed in each cycle, the Fourier resolution 
was =0.33 A, and the number of peaks selected for 
the structure-factor calculations was equal to the 
expected number of atoms. R(~o) values for meso- 
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Table 8. Summary of  success rates for the test structures 

Structure 

Prostaglandin E2 

Trials 

128 

Prostaglandin F,/3 128 30 8 

Aldosterone 128 { 4030 1614 

500 ~ 30 8 9a-Methoxycortisol [ 40 10 
10 0 

AZET (equal atoms) 128 30 7 
50 13 
70 14 
10 5 

AZET (as CI2C46) 128 30 20 
50 21 
70 23 

Tetrahymanol 128 { 70 3 
100 4 

APAPA (equal atoms) 128 { 70 0 
100 0.8 

APAPA (as P2C67) 128 { 10070 1.51"5 

Antibiotic A204A 128 ~ 70 4 [ 100 4 

Isoleucinomycin ~ 500 100 2 
[ 2048 150 4 

meso-Valinomycin 1024 150 0.9 

Non-peptidic ~ 1024 150 2 l 
enkephalin analog [2048 150 

Hexaisoleucinomycin 2000 100 

Solutions (%)  Phase-invariant  ratios 

Cycles Triplets only Triplets and quartets  Triplets only Triplets and quartets  

30 20 32 10:86:0 10:20:100 
40 29 40 

100 44 66 
/51 10:100:0 10:100:20" 

i 10:60:60" 
tl 3 10:20:100 

12 10: 100:0 10:20:100 
12 
13 10:100:0 10:20:100 
16 
2 10:100:0 10:100:500 
9 

15 
22 

5 10:I00:0 10:100:500 
18 
22 
24 

7 10:100:0 10:100:500 
9 

0 10:100:0 10:100:500 
0 
0 10:100:0 10:100:500 
0 

2 10:100:0 !0:100:500 
3 
3 7.1:71:0 7.1:71:536 
4 10:100:0 10:100:550 
1.5 10:100:0 10:100:400 

32 I o: ! 00:0 I o: 100:20* 
62 10:100:350 

0.2 7.1:71:709 

* ZA was not  approximate ly  equal to ZIBI. 

Table 9. Summary of  Rr, RR and R(~o) for test-structure solutions and non-solutions 

Triplets only Triplets and quartets  

Structure RT RR R(solution) R(non-solut ion)  R7. R~ R(solution) R(non-solut ion)  

Prostaglandin E2 0.11 1.11 0.18-0.22 0.230.32 0.32 0.82 0.25.-0.30 0.280.33 

Prostaglandin F,fl 0.09 1.14 0.310.35 0.22-0.52 
10:100:20 0.11 I.II 0.33.0.48 0.290.58 
10:60:60 0.13 1.09 0.29 -0.39 0.320.58 
10:20:100 0.19 1 . 0 0  0.320.36 0.360.54 

Aldosterone 0.18 0.98 0.220.25 0.30-0.53 0.33 0.78 0.270.29 0.310.51 

9ot-Methoxycortisol 0.24 0.88 0.27-0.29 0.40-0.60 0.36 0 . 7 1  0.320.34 0.410.56 
AZET (equal atoms) 0.31 0.77 0.29-0.34 0.38-0.50 0.40 0.64 0.390.41 0.440.52 
AZET (as C12C4~) 0.260.27 0.32-0.48 0.370.38 0.400.51 
Tetrahymanol 0.19 0.97 0.21 0.24--0.43 0.37 0.70 0.35 0.40-0.49 
APAPA (equal atoms) 0.39 0.65 0.39 0.440.56 0.44 0.58 0.480.54 
APAPA (as P2C67) 0.37 0.43-0.55 0.48-0.53 
Antibiotic A204A 0.30 0.79 0.28 0.30-0.47 0.40 0.64 0.38 0.42 -0.50 
lsoleucinomycin 0.36 0.70 0.330.35 0.45-0.51 0.42 0.62 0.42-0.43 0.470.54 
meso-Valinomycin 0.61 1.39 0.53 0.60-0.94 0.79 1.21 0.75 0.85 1.00 
Non-peptidic enkephalin analog 0.27 0.82 0.25-0.26 0.30-0.42 0.40 0.65 0.36--0.37 0.42 0.48 
Hexaisoleucinomycin 0.36 0.70 0.43 0.45 0.49 0.56 0.40 0.64 0.45 0.47 0.54 

valinomycin were calculated using the formulas 
appropriate for the space group P1 [equations (10)- 
(12)]. R(~o) values for all other structures were calcu- 

lated using the P1 formulas [equations (7)-(9)] 
regardless of the identity of the actual non- 
centrosymmetric space group. 
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Table 10. Effects of  invariant set size and composition 
on success rate after 100 cycles for 100 isoleucino- 
mycin trials having an initial mean phase error in the 
range 65-75 ° for 600 phases (approximately 7 phases 

per atom) 

Triplets  Quar te ts  Tota l  n u m b e r  
per a t o m  per a t o m  o f  invariants  Solut ions (%)  

107 714 69000 40 
71 536 51000 50 
57 393 37800 39 
36 250 24000 32 
14 107 10200 27 
71 0 6000 43 

The data in Table 8 show that the success rate is 
10-15% for structures in the 25-50 atom range and 
falls to 1-5% for structures in the 60-100 atom 
range. In many cases, better success rates might be 
obtained by using different parameter-shift condi- 
tions (e.g. two steps of 90 ° each). The success rates 
for the P1 structures (prostaglandin E2 and enkepha- 
lin analog) are unusually high. Although further 
experimentation is clearly needed, the explanation 
for this may be related to the fact that space group 
P1 has great flexibility with respect to the location of 
the origin. This may mean that the atoms in more 
trials start out sufficiently close to consistent atomic 
positions, which, based on the results in Table 4, 
might contribute to the high success rate. 

When moderately heavy atoms such as chlorine 
are present, as they are in the AZET structure, the 
success rate is improved if appropriate numbers of 
the largest peaks on the maps are treated as heavier 
atoms in the structure-factor calculations. When this 
is done, the R(~o) values also improve. The discrep- 
ancy between the equal- and unequal-atom treat- 
ments of the AZET data is most striking when the 
results for relatively few cycles are compared. It 
seems that the presence of heavier atoms allows 
several trials to converge to solution more rapidly 
than would be expected. In fact, the structure 
appears to behave as if the effective number of atoms 
is less. 

Generally, but not always, inclusion of negative 
quartets improves the success rate; however, this 
improvement is often not cost effective in terms of 
computer time. In most cases, triplets and quartets 
were combined in such a way that Y A = Y]B], the 
footnote to Table 8 indicating when this was not the 
case. Although a phase-invariant ratio of 10:20:100 is 
clearly adequate for 9a-methoxycortisol, it is pos- 
sible that more solutions may be obtained for larger 
structures by utilizing more invariants as indicated 
by the data for isoleucinomycin trials with low initial 
mean phase errors as presented in Table 10. For this 
reason, ratios such as 10:100:500 were used for the 
larger structures. In any event, the use of negative 

quartets is certainly not obligatory for P2~2~2~ and 
P2~ structures. 

It is well known that, when conventional direct 
methods are used, the inclusion of negative quartets 
often alleviates the problem of an over-consistent 
solution, with loss of enantiomorph resolution or a 
single dominant peak, which occurs in symmorphic 
and polar space groups (Schenk, 1972; Sheldrick, 
1990). This type of situation did not prove to be a 
major concern even when the shake-and-bake 
method was used without negative quartets. It did 
occur, however, in the case of prostaglandin F~fl, a 
25 atom structure that crystallizes in space group C2 
and has unusually high thermal motion for a struc- 
ture of its size. As shown in Table 9, the R(~o) values 
for some non-solutions (30 in all) are lower than the 
values for any of the l0 solutions when only triplet 
invariants are used. The problem is not resolved 
when a small number of quartets (phase-invariant 
ratio 10:100:20) is used because seven non-solutions 
still have R(~0) values less than the values for any of 
the seven solutions. When equal numbers of triplets 
and quartets are used (ratio 10:60:60), one of the 14 
solutions does have the lowest value of R(~o), but the 
next four lowest values are for non-solutions. How- 
ever, when more negative quartets are included to 
give a ratio of 10:20:100 and F,A = Y lBI, the lowest 
R(~o) values obtained are for l l of the 16 solutions. 

A few non-solution trials for the larger (71 atom) 
C2 test structure, antibiotic A204A, also have R(~o) 
values close to the values for solutions when only 
triplets are used. Although the R(~,) values are 
always diagnostic for the enkephalin analog solu- 
tions, there is a very significant increase in success 
rate when negative quartets are used for this 96 atom 
P1 structure. This increase, though dramatic, is not 
cost effective when the phase-invariant ratio is 
10:100:350. However, the less dramatic increase 
obtained with a ratio of 10:100:20 is computationally 
efficient. These observations, as well as the findings 
for prostaglandin F l f l  , indicate that it is probably 
wise to include some negative quartets when making 
applications in space groups lacking a screw axis. 

Another problem that frequently arises with 
tangent-formula-based direct methods is the occur- 
rence of translated molecules that may have few, if 
any, atoms missing but that will not respond to 
least-squares refinement. Tetrahymanol,  a steroid 
with much internal symmetry and two molecules in 
the asymmetric unit, was a classic example of this 
problem. Of the 128 trials refined using triplets alone 
for 100 cycles, five were solutions with R(~0) in the 
range 0.208-0.210, five were non-solution translated 
molecules with R(~0) in the range 0.244-0.270 and the 
remaining 118 non-solutions had R(q0 in the range 
0.274-0.427. The actual solutions could be distin- 
guished with no difficulty. 
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Because the results of applying the shake-and-bake 
procedure to structures in the 100 atom range were 
so encouraging, it was decided next to attempt an 
application to a structure with approximately 300 
atoms. The data set chosen for this purpose was the 
uncomplexed form of the gramicidin A peptide 
dimer, a structure that contains 317 independent 
non-H atoms when a disordered tryptophan ring and 
the 12 molecules of ethanol present in the crystal are 
counted (Langs, 1988). These data were measured to 
0.86 A resolution at 120 K. 

For this experiment, a 0.12/k grid was used to 
generate 240396 one-atom trial structures, and the 
mean phase error for each trial was computed. 
Because of computer time limitations and the 
expected low success rate, the known mean phase 
error was used to select those trials having the 
greatest likelihood of success. The 346 trials having 
an initial mean phase error <_ 80 ~ were run through 
the entire procedure, and three solutions were 
obtained following 450 cycles of minimal-function 
phase refinement using 2000 phases and 20000 trip- 
lets both with and without 186000 negative quartets. 
Thus, the worst-case scenario is that there is only one 
solution per 80000 trials for gramicidin A. Solutions 
were recognized on the basis of their low R(~p) values 
and verified by computation of final mean phase 
errors. One of the final minimal-function solution 
maps was also analyzed in detail to confirm that the 
structure was indeed recognizable. In all, 145 atoms 
in two chemically sensible fragments could be identi- 
fied using interpeak geometry calculations. These 
atoms were mostly in the main chain and there were 
no breaks except in the end residues. A subsequent 
structure-factor and Fourier calculation (using 14435 
reflections having Fobs > 20"r  and Fcalc/Fobs > 0.3) 
revealed the locations of an additional 117 atoms. 

Concluding remarks 

The results presented above demonstrate that the 
automated shake-and-bake procedure, which 
alternates minimal-function phase refinement with 
Fourier filtering, can be successfully applied to solve 
structures containing as many as 300 non-H atoms. 
The method is feasible using a typical workstation, 
as shown by the CPU times in Table 11, and the 
quality of the final electron-density maps is excellent. 
Initial phases for trial structures are obtained from 
structure-factor calculations based on randomly 
positioned starting atoms. Solutions can be distin- 
guished from non-solutions (including translated 
molecules) by selecting the trials with the smallest 
values of the minimal function. Care should be taken 
to include negative quartets among the invariants 
used for phase refinement in space groups lacking a 
screw axis. In other cases, the use of triplet invariants 

Table I 1. Running times per trial per shake-and-bake 
cycle on a S U N  Sparc station I 

Phase-invariant ratios of 10:100:0 were used. 

Time (s) 
9a-Methoxycortisol 2.2 
Isoleucinomycin 6.8 
Non-peptidic enkephalin analog 6.8 
Gramicidin A 56.8 

alone is adequate. Using a maximum of five 
parameter-shift steps of 16' each during phase 
refinement, the success rate as measured by conver- 
gence to a model refinable by conventional least 
squares is 1-5% for structures in the 100 atom range, 
but higher success rates are achieved for structures in 
space group PI. The best results (26% success) for 
one 28 atom test structure were obtained when only 
two parameter-shift steps of 90' each were used. The 
relative efficiencies of other optimization techniques 
such as simulated annealing have not been explored. 

As the complexity of the structure increases, the 
percentage of trials converging to solutions decreases 
and the number of cycles necessary for successful 
convergence increases. There is some evidence that, if 
a few moderately heavy atoms (e.g. chlorine) are 
present, the structure will behave as if the overall 
number of atoms present is less and yield more 
solutions with fewer cycles. Unfortunately, neither 
the minimal function itself nor any other quantity 
has yet been found that will identify, at an early 
stage, those trial structures that are most likely to 
become solutions. The shake-and-bake procedure is 
more computer intensive than conventional direct- 
method procedures because of the calculation of 
many forward and inverse Fourier transformations 
for each trial. Consequently, present efforts are 
focused on finding ways to minimize the number of 
trials that need to be examined in order to ensure a 
solution and to make each computational step as 
efficient as possible. This includes a major effort to 
exploit the capabilities inherent in parallel and 
distributed architectures. It is hoped that these 
approaches will significantly reduce the computing 
time required and allow routine application of this 
method to much larger structures for which no 
routine phasing technique presently exists. Recent 
success in an ab initio redetermination of the crambin 
structure at 0.83/k resolution (Hauptman, Weeks, 
Smith, Teeter & Miller, 1993) leaves us hopeful that 
the method can be applied in the macromolecular 
case after replacement of the peak-picking algorithm 
by density-modification methods more suitable for 
non-atomic-resolution data. 

This research was supported by NSF grants CHE- 
8822296 and IRI-9108288 and by NIH grants 
GM46733 and DK19856. The authors also thank Dr 



220 MINIMAL-FUNCTION PHASE R E F I N E M E N T  AND FOURIER FILTERING.  II 

R. Jones of the Thinking Machines Corporation and 
Dr R. Martino of the NIH for making available 
computer time that made much of the work reported 
here possible. 

References 

COLENS, A., DECLERCQ, J. P., GERMAIN, G., PUTZEYS, J. P. & VAN 
MEERSSCHE, M. (1974). Cryst. Struct. Commun, 3, i19- 
122. 

DETITTA, G. T., HAUPTMAN, H. A., MILLER, R., PAGELS, M., 
SAraN, T., THUMAN, P. & WEEKS, C. M. (1991). Proceedings o[ 
the Sixth Distributed Memory Computing Conference, pp. 
587-594. New York: IEEE Computer Society Press. 

DETITTA, G. T., WEEKS. C. M., THUMAN, P., MILLER, R. & 
HAUPTMAN, H. A. (1994). Acta Cryst. AS0, 203-210. 

DUAX, W. L. & HAUPTMAN, H. A. (1972). J. Am. Chem. Soc. 94, 
5467-5471. 

EDMONDS, J. W. & DUAX, W. L. (1974). Prostaglandins, 5, 
275-281. 

HAUPTMAN, H. A. (1988). Proceedings of the American Crystallo- 
graphic Association Meeting, Philadelphia, USA, Abstract R4. 

HAUPTMAN, H. A. (1991). Crystallographic Computing 5: /'rom 
Chemistry to Biology, edited by D. MORAS, A. D. PODJARN¥ & 
J. C. TH1ERRV, pp. 324-332. IUCr/Oxford Univ. Press. 

HAUPTMAN, H. A., WEEKS, C. M., SMITH, G. D., TEETER, M. M. & 
MILLER, R. (1993). Proceedings of the American Crystallo- 
graphic Association Meeting, Albuquerque, USA, Abstract 
PIIH. 

LANGS, D. A. (1988). Science, 241, 188-191. 
LANGS, D. A., DUAX, W. L., CARRELL, H. L., BERMAN, H. 

CASPI, E. (1977). J. Org. Chem. 42, 2134-2137. 
MILLER, R., DETITTA, G. T., JONES, R., LANGS, D. A., WEEKS, 

C. M. & HAUPTMAN, H. A. (1993). Science, 259, 1430-1433. 
PLETNEV, V. Z., GALITSKII, N. M., SMITH, G. D., WEEKS, C. M. 

DUAX, W. L. (1980). Biopolymers, 19, 1517-1534. 
PLETNEV, V. Z., IVANOV, V. T., LANGS, D. A., STRONG, P. 

DUAX, W. L. (1992). Biopolymers, 32, 819-827. 
SCHENK, H. (1972). Acta Cryst. A28, 412-421. 
SHELDRICK, G. M. (1990). Acta Cryst. A46, 467-473. 
SMITH, G. D., STRONG, P. D. & DUAX, W. L. (1978). Acta Cryst. 

B34, 3436-3438. 
SUCK, D., MANOR, P. C. & SAENGER, W. (1976). Acta Cryst. B32, 

1727-1737. 
WEEKS, C. M., DETITTA, G. T., MILLER, R. & HAUPTMAN, H. A. 

(1993). Acta Cryst. D49, 179-181. 
WEEKS, C. M., DUAX, W. L. & WOLFF, M. E. (1976). Acta Cryst. 

B32, 261-263. 

Acta Cryst. (1994). A50, 220-224 

Coplanar Si[000, 440, 404] Three-Beam Diffraction. II. Precise Calculation 

BY O. PACHEROV,~ 

Institute of  Physics, Academy of Sciences of  the Czech Republic, Cukrovarnickti 10, 162 00 Praha 6, 
Czech Republic 

(Received 15 April 1993; accepted 16 September 1993) 

Abstract 

The results of the measurement of the Ni Ka: 
spectral-line peak with a double-crystal spectrometer 
with thick perfect silicon crystals in the dispersive 
arrangement (440 sym., + 4403 sym.) were published 
some time ago. A sharp anomaly was found in the 
measured rocking curve when the s(cond crystal was 
adjusted for coplanar three-beam Bragg 4403 diffrac- 
tion. In this paper, the experimental curves are com- 
pared with the precise calculation based on the 
dynamical theory of X-ray diffraction. 

I. Introduction 

Coplanar three-beam Si[000, 440, 404] X-ray Bragg 
diffraction was first mentioned by Deslattes (1968) 
and was later examined by Graeff & Bonse (1977) 
from an interferometric point of view. The precise 
measurement of this diffraction by double-crystal 
diffractometry was performed by Pacherovfi & 
Bubfikovfi (1987). 

© 1994 International Union of Crystallography 
Printed in Great Britain - all rights reserved 

It was shown by Graeff & Bonse (1977) that 
coplanar three-beam [000, 440, 404] diffraction 
apparently changes the properties of the 440 reflec- 
tion around the value of A,~ - Ni Ka2 (for which the 
condition for three-beam coplanar [000, 440, 404] 
diffraction can be exactly fulfilled) in comparison 
with the usual two-beam [000, 440] diffraction. In 
such a case, the method of having the double-crystal 
diffractometer arranged as a spectrometer, in which 
the sample crystal is adjusted to the three-beam 
diffraction, can be properly used in the experimental 
part of the treatment of this type of many-beam 
diffraction. 

Pacherovfi & Bubfikovfi (1987) showed the results 
of such measurement. In a narrow wavelength inter- 
val, a very sharp anomaly was found. A simple 
calculation describing the experiment was suggested 
and the necessary calculation performed to explain 
qualitatively the anomalous change. In the experi- 
ment, the sample surface was parallel to the (110) 
lattice planes. Thus, the 440 reflection was symmetri- 
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